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Constructions of Some Quantum Structures
and Fuzzy Effect Space
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Quantum structures like effect algebras, σ -effect algebras, orthoalgebras, orthomodular
posets, and σ -orthomodular posets are constructed by use of special fuzzy sets on posets.
The concept of fuzzy effect space is introduced and a representation of a lattice effect
algebra with a strong order determining system of states by means of fuzzy effect space
is established.
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1. INTRODUCTION

Since Birkhoff and Von Neumann in 1936 proposed the problem of the logic
of quantum mechanics, a number of different mathematical models have been
constructed and studied to reflect various aspects of quantum mechanics, among
which the lattice of all closed subspaces of a separable infinite dimensional Hilbert
space (namely, an orthomodular lattice) plays an important role as a main model
(Dvurečenskij and Pulmannová, 2000; Miklós, 1998). In the past decades, with the
development of the theory of quantum logics, new algebraic structures have been
proposed as their models. Foulis and Bennet (1994) defined effect algebras while
Kôpka and Chovanec (1994) introduced D-posets equivalent to effect algebras.
In addition, Giuntini and Greuling (1989) introduced orthoalgebras. These works
can be regarded as generalization of quantum logics, i.e., orthomodular lattice or
orthomodular poset (Kalmbach, 1983). In the study of quantum logics, the state
is considered as one of basic objects. Since the state is [0, 1]-valued function, it
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combines both algebraic and fuzzy ideas, which further leads to the generation of
fuzzy quantum logics (Kôpka, 1992; Mesiar, 1994; Pykacz, 1992, 1994). From the
angle of fuzzy sets, Dvurečenskij (1999) gave fuzzy representations of some quan-
tum structures by the states on them in detail. In this paper we give constructions of
some quantum structures via fuzzy sets on posets from the universe point of view.
These include constructions of effect algebras, σ -effect algebras, orthoalgebras,
orthomodular posets, and σ -orthomodular posets by use of special fuzzy sets on
the posets. In the end, we introduce the notions of fuzzy effect space, and establish
a representation of a lattice effect algebra with a strong order determining system
of states by means of fuzzy effect space.

2. CONSTRUCTION OF EFFECT ALGEBRAS

Definition 2.1. (Foulis and Bennett, 1994). An effect algebra is a set P with
two particular elements 0, 1 (0 �= 1), and with a partial binary operation ⊕ :
P × P −→ P such that for all a, b, c ∈ P we have

(EAi) If a ⊕ b ∈ P , then b ⊕ a ∈ P and a ⊕ b = b ⊕ a (commutativity);
(EAii) If b ⊕ c ∈ P and a ⊕ (b ⊕ c) ∈ P , then a ⊕ b ∈ P and (a ⊕ b) ⊕

c ∈ P , and a ⊕ (b ⊕ c) = (a ⊕ b) ⊕ c (associativity);
(EAiii) For any a ∈ P there is a unique b ∈ P such that a ⊕ b is defined,

and a ⊕ b = 1 (orthocomplementation);
(EAiv) If 1 ⊕ a is defined, then a = 0 (zero-one law).

If the assumption of (EAii) is satisfied, we write a ⊕ b ⊕ c for the
element (a ⊕ b) ⊕ c = a ⊕ (b ⊕ c) in P .

Remark 2.2. Let a and b be two elements of an effect algebra P .

(i) a ≤ b iff there exists an element c ∈ P such that a ⊕ c = b. If (P; ≤) is
a lattice, then P is called a lattice effect algebra.

(ii) a ⊥ b iff a ≤ b⊥ iff a ⊕ b is defined in P .
(iii) b is the orthocomplement of a iff b is a unique element of P such that

a ⊕ b = 1 and it is written as a⊥.

We say that a finite sequence F = {a1, a2, . . . , an} in P is ⊕-orthogonal if
a1 ⊕ a2 ⊕ · · · ⊕ an exists in P . Here we define a1 ⊕ a2 ⊕ · · · ⊕ an = (a1 ⊕ a2 ⊕
· · · ⊕ an−1) ⊕ an supposing that a1 ⊕ a2 ⊕ · · · an−1 exists and (a1 ⊕ a2 ⊕ · · · ⊕
an−1) ⊥ an . An arbitrary system G = {ai }i∈I of not necessarily different elements
of P is ⊕-orthogonal iff, for every finite subset F of I , the system {ai }i∈F is
⊕-orthogonal. An ⊕-orthogonal system G = {ai : i ∈ I } of P has a ⊕-sum in P ,
denoted by ⊕i∈I ai iff in P there exists the join ⊕i∈I ai = ∨J ⊕i∈J ai , where J runs
over all finite subsets in I . An effect algebra P is a σ -effect algebra (complete effect
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algebra) if ⊕i∈I ai belongs to P for any countable (arbitrary) system {ai : i ∈ I } of
⊕-orthogonal elements from P .

Example 2.3. (Dvurečenskij, 1999). Let the closed interval [0, 1] be ordered
by the natural way. For two numbers a, b ∈ [0, 1], we define a ⊕ b iff a + b ≤ 1
and put then a ⊕ b = a + b. Then [0, 1] is a lattice effect algebra. In addition,
we recall that {as} is ⊕-orthogonal iff {as} is summable and �sas ≤ 1. Hence,
any ⊕-orthogonal system has the sum in it and ⊕sas = �sas . Obviously, [0, 1] is
σ -effect algebra.

Definition 2.4. (Dvurečenskij, 1999). A real-valued mapping m on an effect
algebra P is said to be a state if (i) m(1) = 1, and (ii) m(a ⊕ b) = m(a) + m(b), a,
b ∈ P . A state m is said to be a σ -additive state if m(⊕i∈I ai ) = �i∈I m(ai ) holds
for any countable index set I , whenever ⊕i∈I ai exists in P .

Definition 2.5. (Pykacz, 1992). A nonvoid system of states ϕ on P is said to be
order determining if, for a, b ∈ P, a ≤ b iff σ (a) ≤ σ (b) for any σ ∈ ϕ.

Theorem 2.6. Let P be a poset with the least element 0 and the largest element

1. A set ϕ of maps from P into [0, 1] satisfy the following conditions:
(i) For a, b ∈ P, a ≤ b iff σ (a) ≤ σ (b), σ (0) = 0, σ (1) = 1, for any σ ∈

ϕ.
(ii) If for d1, d2 ∈ P, σ (d1) + σ (d2) ≤ 1 for any σ ∈ ϕ, then there exists

b ∈ P such that σ (b) + σ (d1) + σ (d2) = 1, for all σ ∈ ϕ.

Then P = (P, ⊕, 0, 1), where a ⊕ b is defined iff σ (a) + σ (b) ≤ 1 (a, b ∈ P, σ ∈
ϕ) and we put σ (a ⊕ b) = σ (a) + σ (b), is an effect algebra. Moreover, ϕ is an
order determining system of states on (P, ⊕, 0, 1).

Conversely, if P is an effect algebra with an order determining system of states
ϕ, then ϕ satisfy the above conditions.

Proof: Suppose a ∈ P, σ (a) ≤ 1, for any σ ∈ ϕ, by (i) and (ii), then there exists a
unique a⊥ ∈ P , such that σ (a⊥) = 1 − σ (a). Now, let a, b ∈ P . If σ (a) + σ (b) ≤
1 for any σ ∈ ϕ, by (i), (ii), then there exists a unique c ∈ P such that σ (a) +
σ (b) + σ (c) = 1, hence, σ (a) + σ (b) = σ (c⊥), for any σ ∈ ϕ. Let a ⊕ b = c⊥,
then a ⊕ b is well defined.

(EAi) If a ⊕ b ∈ P , then for any σ ∈ ϕ, σ (a) + σ (b) ≤ 1 such that σ (a ⊕
b) = σ (a) + σ (b) = σ (b ⊕ a). So by (i) a ⊕ b = b ⊕ a.

(EAii) If b ⊕ c ∈ P and a ⊕ (b ⊕ c) ∈ P , then σ (b) + σ (c) ≤ 1, σ (a) +
σ (b ⊕ c) ≤ 1. Since σ (a) + σ (b) + σ (c) ≤ 1 which implies that
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σ (a) + σ (b) ≤ 1. So a ⊕ b is defined and σ (a ⊕ b) + σ (c) ≤ 1 such
that (a ⊕ b) ⊕ c is defined.

Obviously, σ ((a ⊕ b) ⊕ c) = σ (a ⊕ (b ⊕ c)). So (a ⊕ b) ⊕
c = a ⊕ (b ⊕ c).

(EAiii) For any a ∈ P, σ ∈ ϕ, σ (a) + σ (0) ≤ 1 by (ii) there exists b ∈ P
such that σ (a) + σ (b) = 1. Obviously b is unique. So a ⊕ b is defined
and σ (a ⊕ b) = σ (1), then a ⊕ b = 1 (orthocomplementation).

(EAiv) If 1 ⊕ a is defined, then for any σ ∈ ϕ, σ (1 ⊕ a) = σ (1) + σ (a) ≤ 1.
So σ (a) = 0 then a = 0.

So P = (P, ⊕, 0, 1) is an effect algebra. Obviously, ϕ is an order determining
system of states.

Conversely, let P = (P, ⊕, 0, 1) be an effect algebra with an order deter-
mining system of states ϕ. Clearly, (i) is satisfied. If for a, b ∈ P, σ (a) + σ (b) ≤
1, σ ∈ ϕ, then σ (a) ≤ σ (b⊥) such that a ≤ b⊥. Hence, there exists c ∈ P such
that a ⊕ c = b⊥ and a ⊥ c. Then σ (a ⊕ c) = σ (b⊥) i.e., σ (a) + σ (c) = 1 − σ (b)
such that σ (a) + σ (b) + σ (c) = 1. �

Theorem 2.7. Let P be a poset with the least element 0 and the largest element

1. A set ϕ of maps from P into [0,1] satisfy the following conditions:
(i) For a, b ∈ P, a ≤ b iff σ (a) ≤ σ (b) and σ (0) = 0, σ (1) = 1, σ ∈ ϕ;

(ii) If for d1, d2 ∈ P, σ (d1) + σ (d2) ≤ 1 for any σ ∈ ϕ, then there exists
b ∈ P such that σ (b) + σ (d1) + σ (d2) = 1, σ ∈ ϕ;

(iii) If σ (a1) ≤ σ (a2) ≤ · · · ≤ σ (ai ) ≤ · · ·, then there exists b ∈ P such
that σ (b) = ∨i∈I σ (ai ).

Then (P, ⊕, 0, 1) is a σ -effect algebra, where a ⊕ b is defined iff σ (a) +
σ (b) ≤ 1(a, b ∈ P) for any σ ∈ ϕ, and we put σ (a ⊕ b) = σ (a) + σ (b). ϕ is the
σ -additive order determining system of states.

Conversely, if (P, ⊕, 0, 1) is a σ -effect algebra with an σ -additive order
determining system states. Then the states of P satisfy the above conditions.

Proof: By theorem 2.6 we note that (P, ⊕, 0, 1) is an effect algebra with an
order determining system of states. We only prove (P, ⊕, 0, 1) is σ -complete.
For any countable system ai , i = 1, 2, . . . of orthogonal elements from P , and for
any finite subset J of N , the set of natural numbers, there exists a natural num-
ber n such that for any element j ∈ J, j is smaller than or equal to n. Then it
is obvious that ⊕ j∈J a j ≤ ⊕n

i=1ai . So in order to prove that P is σ -complete, we
only prove that ∨n∈N (⊕n

i=1ai ) is in P . Since a1 ≤ a1 ⊕ a2 ≤ a1 ⊕ a2 ⊕ a3 ≤ · · ·,
then σ (a1) ≤ σ (a1 ⊕ a2) ≤ σ (a1 ⊕ a2 ⊕ a3) ≤ · · ·, by (iii) there exists b ∈ P such
that σ (b) = ∨n∈N σ (⊕n

i=1ai ). We conclude that b = ∨n∈N (⊕n
i=1ai ). Indeed, it is

easy to say that ⊕n
i=1ai ≤ b, for all n ∈ N . For all c, all n ∈ N , ⊕n

i=1ai ≤ c,
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then σ (⊕n
i=1ai ) ≤ σ (c), hence, ∨n∈N σ (⊕n

i=1ai ) ≤ σ (c), i.e., σ (b) ≤ σ (c), which
implies that b ≤ c. This shows that P is σ -complete. Obviously, ϕ is order de-
termining system of σ -additive states on P . Indeed, from the above proof, for
any countable system {ai : i ∈ I } of ⊕-orthogonal elements in P , σ (⊕i∈I ai ) =
∨n∈N σ (⊕n

i=1ai ) = ∨n∈N �n
i=1σ (ai ) = �∞

i=1σ (ai ), since [0, 1] is σ -effect
algebra.

Conversely, by Theorem 2.6, (i), (ii) is satisfied. Let σ (a1) ≤ σ (a2) ≤ · · · ≤
σ (ai ) ≤ · · ·, which implies that a1 ≤ a2 ≤ a3 ≤ · · · , then there exists b1, b2, b3,
· · · such that a1 = b1, b1 ⊕ b2 = a2, a2 ⊕ b3 = a3, · · ·. Thus, we obtain a count-
able orthogonal sequence b1, b2, · · · of P . Since P is σ -complete, it is easy to
see that ⊕∞

i=1bi = ∨n∈N ⊕n
i=1 bi = Vn∈N an . Hence, σ (⊕∞

i=1bi ) = �∞
i=1σ (bi ) =

∨n∈N �n
i=1σ (bi ) = ∨n∈N σ (an), i.e., (iii)is true. �

3. CONSTRUCTION OF ORTHOALGEBRAS

Definition 3.6. (Giuntini and Greuling, 1989). An orthoalgebra is a set P with
two particular elements 0, 1(0 �= 1), and with a partial binary operation ⊕:P ×
P −→ P such that for all a, b, c ∈ P we have

(OAi) If a ⊕ b ∈ P , then b ⊕ a ∈ P and a ⊕ b = b ⊕ a (commutativity);
(OAii) If b ⊕ c ∈ P and a ⊕ (b ⊕ c) ∈ P , then a ⊕ b ∈ P and (a ⊕ b) ⊕

c ∈ P , and a ⊕ (b ⊕ c) = (a ⊕ b) ⊕ c (associativity);
(OAiii) For any a ∈ P there is a unique b ∈ P such that a ⊕ b is defined,

and a ⊕ b = 1 (orthocomplementation);
(OAiv) If a ⊕ a is defined, then a = 0 (consistency).

Similarly as for effect algebras we introduce a partial order ≤ on P , and we
write a ⊥ b iff a ⊕ b exists in P . A state and an order determining system of states
on orthoalgebras are defined as those for effect algebras.

Theorem 3.8. Let P be a poset with the least element 0 and the largest element

1. A set ϕ of maps from P into [0, 1] satisfy the following conditions:
(i) For a, b ∈ P, a ≤ b iff σ (a) ≤ σ (b), σ (0) = 0, σ (1) = 1 for any

σ ∈ ϕ.
(ii) If for d1, d2 ∈ P, σ (d1) + σ (d2) ≤ 1 for any σ ∈ ϕ, then there exists

b ∈ P such that σ (b) + σ (d1) + σ (d2) = 1, σ ∈ ϕ.
(iii) If a ∈ P, σ (a) + σ (a) ≤ 1 for any σ ∈ ϕ, then a = 0.

Then P = (P, ⊕, 0, 1), where a ⊕ b is defined iff σ (a) + σ (b) ≤ 1(a, b ∈ P)
for any σ ∈ ϕ and we put σ (a ⊕ b) = σ (a) + σ (b), is an orthoalgebra. And ϕ is
order determining system of states on P.
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Conversely, if P is an orthoalgebra with an order determining system of states
ϕ, then ϕ satisfies the above conditions.

The proof is similar to the proof of Theorem 2.6. Condition (iii) implies that
P is an orthoalgebra.

4. CONSTRUCTION OF ORTHOMODULAR POSETS

Definition 4.7. (Kalmbach, 1983). An orthomodular poset is a poset P =
(P, ≤, ⊥, 0, 1) (0 �= 1) satisfying the following conditions:

(OMi) (a⊥)⊥ = a for any a ∈ P .
(OMii) if a ≤ b, then b⊥ ≤ a⊥, a, b ∈ P .

(OMiii) a ∨ a⊥ = 1 for any a ∈ P , where ∨ denotes the least upper bound.
(OMiv) a ∨ b ∈ P , whenever a, b ∈ P and a ⊥ b.
(OMv) if a ≤ b, a, b ∈ P , then b = a ∨ (b ∧ a⊥).

If we change the condition (OMiv) to ∨∞
i=1ai ∈ P , whenever ai ⊥ a j , i �=

j, ai ∈ P, i ≥ 1. We call P a σ -orthomodular poset. A state on an orthomodular
poset P is a mapping σ :P −→ [0, 1] such that σ (1) = 1 and σ (a ∨ b) = σ (a) +
σ (b) whenever a ≤ b⊥. Similarly, we define a σ -additive state on a σ -orthomodular
poset P , i.e., σ :P −→ [0, 1] such that (i)σ (1) = 1, and (ii)σ (∨∞

i=1ai ) = �∞
i=1σ (ai )

whenever ai ≤ a⊥
j for i �= j .

Theorem 4.9. Let P be a poset with the least element 0 and the largest element

1. A set ϕ of maps from P into [0, 1] satisfy the following conditions:
(i) For a, b ∈ P, a ≤ b iff σ (a) ≤ σ (b), and σ (0) = 0, σ (1) = 1 for any

σ ∈ ϕ.
(ii) For any d1, d2, d3 ∈ P if σ (di ) + σ (d j ) ≤ 1, i �= j , for any σ ∈ ϕ,

then there exists b ∈ P such that σ (b) + σ (d1) + σ (d2) + σ (d3) = 1,
for any σ ∈ ϕ.

Then P = (P, ≤, ⊥), whenever for a ∈ P, a⊥ is the unique element of P
satisfying σ (a) + σ (a⊥) = 1, for any σ ∈ ϕ, is an orthomodular poset and ϕ is an
order determining system of states on P.

Conversely, if P is an orthomodular poset with an order determining system
of states ϕ, then ϕ satisfies the above conditions.

Proof: Suppose a ∈ P . If σ (a) ≤ 1, for any σ ∈ ϕ, let b, c = 0, then σ (a) +
σ (b) + σ (c) ≤ 1, for any σ ∈ ϕ. By (ii), then there exists a d ∈ P , such that
σ (a) + σ (d) = 1. Obviously, d is unique. Hence, let a⊥ = d, then a⊥ is well
defined.
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(OMi) For a⊥, σ ((a⊥)⊥) + σ (a⊥) = 1. So σ (a) + σ (a⊥) = σ (a⊥⊥) +
σ (a⊥). Then σ (a) = σ (a⊥⊥), by (i), a = a⊥⊥.

(OMii) If a ≤ b, then b⊥ ≤ a⊥. Let a ≤ b, by (i), σ (a) ≤ σ (b) for any
σ ∈ ϕ, since σ (b) + σ (b⊥) = 1, then σ (a) + 1 − σ (b) ≤ 1, i.e., 1 −
σ (b) ≤ 1 − σ (a) which implies that σ (b⊥) ≤ σ (a⊥), then b⊥ ≤ a⊥.

(OMiii) a ∨ a⊥ = 1 for any a ∈ P , where ∨ denotes the least upper bound.
Indeed, if there is an element b ∈ P such that a, a⊥ ≤ b, then σ (a) +
σ (a⊥) ≤ 1, σ (a⊥) + σ (b⊥) ≤ 1, σ (a) + σ (b⊥) ≤ 1, by (ii), there
exists d ∈ P such that σ (d) + σ (a⊥) + σ (b⊥) + σ (a) = 1, so
σ (d) = σ (b⊥) = 0 which implies that b = 1. Then P = (P, ≤, ⊥)
is an orthoposet.

(OMiv) a ∨ b ∈ P , whenever a, b ∈ P and a ⊥ b. Since P is an orthoposet,
a, b ∈ P , then a ⊥ b iff a ≤ b⊥. Let a ⊥ b, by (i), σ (a) + σ (b) ≤ 1
for any σ ∈ ϕ. Obviously σ (a) + σ (0) ≤ 1, σ (b) + σ (0) ≤ 1, by
(ii), there exists c ∈ P such that σ (a) + σ (b) + σ (c⊥) + σ (0) =
1, i.e., σ (a) + σ (b) + σ (c⊥) = 1. We assert c = a ∨ b. If for d ∈
P, a ≤ d , b ≤ d , then σ (a) + σ (d⊥) ≤ 1, σ (b) + σ (d⊥) ≤ 1, σ (a)
+ σ (b) ≤ 1, by (ii), there exists e ∈ P such that σ (e) + σ (a) +
σ (b) + σ (d⊥) = 1, hence σ (a) + σ (b) = σ (c) = σ (d) − σ (e) ≤
σ (d). So c ≤ d , then c = a ∨ b.

(OMv) If a ≤ b, a, b ∈ P , then a ⊥ b⊥, by (OMiv), a ∨ b⊥ ∈ P, then b⊥ ⊥
(a ∨ b⊥)⊥ and a ⊥ (a ∨ b⊥)⊥. By (ii), there exists e ∈ P such that
σ (e) + σ (b⊥) + σ (a) + σ ((a ∨ b⊥)⊥) = 1 for any σ ∈ ϕ, hence,
σ (e) + σ (b⊥) + σ (a) = σ (a ∨ b⊥). By the proof of (OMiv), σ (e) +
σ (b⊥) + σ (a) � σ (a) + σ (b⊥). So σ (e) = 0, then e = 0 such that σ
(b) = σ (a ∨ (b⊥ ∨ a)⊥). Hence b = a ∨ (b⊥ ∨ a)⊥, then P =
(P, ≤, ⊥) is an orthomodular poset.

Obviously, ϕ is an order determining system of states on P .
Conversely, P = (P, ≤, ⊥) is an orthomodular poset. ϕ is the order determin-

ing system of states on P . Obviously, (i) is satisfied. If for d1, d2, d3 ∈ P, σ (di ) +
σ (d j ) ≤ 1, i �= j , for any σ ∈ ϕ. Then σ (di ) ≤ 1 − σ (d j ) = σ (d⊥

j ), then di ≤ d⊥
j .

So di ⊥ d j then d1 ∨ d2 ∨ d3 ∈ P and σ (d1 ∨ d2 ∨ d3) = σ (d1) + σ (d2) + σ (d3).
Let b = (d1 ∨ d2 ∨ d3)⊥, then σ (b) + σ (d1) + σ (d2) + σ (d3) = 1. �

Theorem 4.10. Let P be a poset with the least element 0 and the largest element

1. A set of maps from P into [0, 1] satisfy the following conditions:
(i) For a, b ∈ P, a ≤ b iff σ (a) ≤ σ (b), and σ (0) = 0, σ (1) = 1, for any

σ ∈ ϕ.
(ii) For any countable subset D : d1, d2, · · · , dn , · · · of elements of P,

where i �= j implies σ (di ) + σ (d j ) ≤ 1 for all σ ∈ ϕ, there exists
b ∈ P such that σ (b) + �∞

i=1σ (di ) = 1 for all σ ∈ ϕ.
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Then P = (P, ≤, ⊥), where a ∈ P, a⊥ is the unique element of P satisfyingσ (a) +
σ (a⊥) = 1, for any σ ∈ ϕ, is an σ -orthomodular poset and ϕ is σ -additive order
determining system of states on P.

Conversely, if P is a σ -orthomodular poset with a σ -additive order determin-
ing system of states ϕ, then ϕ satisfies (i), (ii).

Proof: By Theorem 4.9., we know P = (P, ≤, ⊥) is an orthomodular poset.
We only prove P is σ -complete, that is to say, ∨∞

i=1ai ∈ P whenever ai ∈ P , and
i �= j, ai ⊥ a j . Indeed, i �= j, ai ⊥ a j , then σ (ai ) + σ (a j ) ≤ 1 for any σ ∈ ϕ, by
(ii), there exists b ∈ P such that σ (b⊥) + �∞

i=1σ (ai ) = 1 for any σ ∈ P .
We assert b = ∨∞

i=1ai . For any i, ai ≤ c, c ∈ P , then ai ⊥ c⊥, by (ii), there
exists an element e ∈ P such that σ (e) + �∞

i=1σ (ai ) + σ (c⊥) = 1 for any σ ∈
ϕ, which yields �∞

i=1σ (ai ) = σ (b) = σ (c) − σ (e) ≤ σ (c), so b ≤ c, then b =
∨∞

i=1ai ∈ P . From the above proof, it is easy to see that ϕ is σ -additive order
determining system of states of P .

Conversely, assume ϕ is an order determining system of states. Clearly, (i)
is true. For a countable sequence d1, d2, · · · , di , · · · of elements of P , where i �=
j, σ (di ) + σ (d j ) ≤ 1, for any σ ∈ ϕ. Then σ (di ) ≤ σ (d⊥

j ), so di ⊥ d j . Define
b⊥ = ∨∞

i=1di . Then σ (b⊥) = �∞
i=1σ (di ) implies σ (b) + �∞

i=1σ (di ) = 1 for any
σ ∈ ϕ. �

5. FUZZY EFFECT SPACE

Definition 5.8. (Gudder and Pulmannová, 1997). A binary relation ∼ on a par-
tial order abelian monoid P is a weak congruence if it satisfies the following
conditions:

(c1) ∼ is an equivalence relation,
(c2) a ⊥ b, a1 ⊥ b1, a1 ∼ a, b1 ∼ b imply a1 ⊕ b1 ∼ a ⊕ b.

A weak congruence is a congruence if
(c3) a ⊥ b, c ∼ a, then there exists d ∈ P such that d ∼ b, d ⊥ c.

Lemma 5.11. (Gudder and Pulmannová, 1997). Let ∼ be a congruence on an
effect algebra, and ∼ �= P × P. Then P/ ∼ is an effect algebra. Where ã = {b ∈
P : a ∼ b}, ã ⊥ b̃ iff there exists a1, b1 ∈ P such that a1 ∼ a, b1 ∼ b and a1 ⊥ b1,
and we put ã ⊕ b̃ = ( ˜a1 ⊕ b1).

Proposition 5.1. Let P be an effect algebra with an order determining system
of states ϕ. Define x ∼ y iff σ (x) = σ (y) for all σ ∈ ϕ. Then P\ ∼ is an effect
algebra with an order determining system of states.
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Proof: Obviously, ∼ is an equivalence relation. Let a ⊥ b, a1 ⊥ b1, a1 ∼ a, b1 ∼
b, then for all σ ∈ ϕ, σ (a1) = σ (a), σ (b1) = σ (b) and σ (a ⊕ b) = σ (a)+ σ (b),
hence σ (a1 ⊕ b1) = σ (a1) + σ (b1) = σ (a ⊕ b), so a ⊕ b ∼ a1 ⊕ b1. Let a⊥b,
σ (c) = σ (a) for all σ ∈ ϕ, then σ (a ⊕ b) = σ (a) + σ (b) = σ (c) + σ (b) ≤ 1, i.e.,
c ≤ b⊥, so c ⊕ b is defined in P . Let d = b. Then b ⊥ c. Hence, ∼ is a congruence
on P . Since (0, 1) ∈ P × P , but σ (0) �= σ (1) for all σ ∈ ϕ, then 0 is not congruent
with 1, i.e., ∼⊂ P × P . Thus, by Lemma 5.11., P/ ∼ is an effect algebra. For
any σ ∈ ϕ, define σ̃ (x̃) = σ (x), for all x̃ ∈ P\ ∼. It is easy to see {σ̃ : σ ∈ ϕ} is
an order determining system states on P\ ∼. �

Remark 5.9. Let P̃ = P\ ∼, and P̃ : σ̃ → [0, 1] is a state on P̃ . Define σ (x) =
σ̃ (x̃), for all x ∈ P , then σ : P → [0, 1] is a state on P . From these, we see that P̃
has close relation with P . Especially, they have the same range for related states,
i.e., P̃ preserve the value of state on P .

Lemma 5.12. (Foulis and Bennett, 1994). Let (Pα)α∈I be a family of effect alge-
bras and let P = ∏

α∈P Pα be the cartesian product of the family. Then P can be
organized into an effect algebra in such a way that, for p, q ∈ P, p ⊕ q is defined
in P iff pα ⊕ qα is defined in Pα for all α ∈ I , in which case (p ⊕ q)α = pα ⊕ qα

for all α ∈ I . This is called the cartesian product of the effect algebra in the family
(Pα)α∈I . As a special case, if X is a nonempty set and P is an effect algebra, then
the set L X of all functions γ : X → L is again an effect algebra under pointwise
operations.

Example 5.10. Let L = [0, 1], X �= Ø, then [0, 1]X is a lattice effect algebra by
Example 2.3. and Lemma 5.12. Moreover, for fuzzy set f, g ∈ [0, 1]X , f + g ∈
[0, 1]X iff f + g ≤ 1X iff f (x) + g(x) ≤ 1, for all x ∈ X , where 1X denotes the
largest element in [0, 1]X . f ⊥ = 1X − f, ( f ∨ g)(x) = f (x) ∨ g(x), for all x ∈ X .

Refer to (Foulis and Bennett, 1994), a subset Q of an effect algebra P is called
a subeffect algebra of P if (i) 0, 1 ∈ Q; (ii) a ∈ Q, then a⊥ ∈ Q;
(iii) a, b ∈ Q, a⊥b, then a ⊕ b ∈ Q. Further, if P is a lattice effect algebra and Q
is a sublattice of P , then Q is called a sublattice effect algebra of P .

Definition 5.11. A fuzzy topology space ([0, 1]X , δ) (Liu and Luo, 1998) is called
a fuzzy effect space if there exists a base β in δ such that β is a sublattice effect
algebra of [0, 1]X . β is called an effect base.

Remark 5.12. Let ϕ be an order determining system of states of an effect algebra
P . If a ∧ b is defined in P , σ (a ∧ b) = σ (a) ∧ σ (b), for all σ ∈ ϕ, then ϕ is called
a strong order determining system of states.
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Proposition 5.2. Let P be an effect algebra with an order determining system of
states, a, b ∈ P, and a �= b, then there exists a state σ ∈ ϕ, such that σ (a) �= σ (b).

Example 5.13. Let P = [0, 1]X . Define σx0 : P → [0, 1], where σx0 (A) = A(x0),
then P is a lattice effect algebra with a strong order determining system of states
{σx0 : x0 ∈ X}.

Definition 5.14. (Foulis and Bennett, 1994). Let P ,Q be effect algebras. A bijec-
tive map µ from P to Q is called an isomorphism if

(i) µ(1) = 1;
(ii) a, b ∈ P, a⊥b iff µ(a)⊥µ(b) in which case µ(a ⊕ b) = µ(a) ⊕ µ(b).

Theorem 5.15. Let P be a poset. Then P is a lattice effect algebra with a strong
order determining system states iff P is isomorphic to an effect base of some fuzzy
effect space.

Proof: Necessary. Let P be a lattice effect algebra, where ϕ is its strong or-
der determining system of states. Let φ = ϕ, and define µ : P → [0, 1]φ as fol-
lows: µ(a)(σ ) = σ (a) for all a ∈ P, σ ∈ φ. Obviously, µ(1)(σ ) ≡ 1, i.e., µ(1)
is the largest element in [0, 1]φ . Let β = {µ(a)|a ∈ P}, then (µ(a) ∧ µ(b))(σ ) =
µ(a)(σ ) ∧ µ(b)(σ ) = σ (a) ∧ σ (b) = σ (a ∧ b) = µ(a ∧ b)(σ ) for all σ ∈ φ.
Hence, µ(a) ∧ µ(b) = µ(a ∧ b). That is, β is closed under finite meet. Thus there
exists a fuzzy topology δ in φ whose base is β.

Let prove β is a sublattice effect algebra of [0, 1]φ . Since (µ(a)⊥)(σ ) = 1 −
µ(a)(σ ) = 1 − σ (a) = σ (a⊥) = µ(a⊥)(σ ), for all σ ∈ φ, then µ(a)⊥ = µ(a⊥) ∈
β. Hence β is a lattice since µ(a) ∨ µ(b) = (µ(a⊥) ∧ µ(b⊥))⊥ and β is closed
under finite meet and orthocomplement. Let µ(a)⊥µ(b), then µ(a) + µ(b) ≤ 1φ ,
that is, (µ(a) + µ(b))(σ ) = µ(a)(σ ) + µ(b)σ = σ (a) + σ (b) ≤ 1, for all σ ∈ φ.
Hence, a ⊕ b is defined in P , namely, (µ(a) + µ(b))(σ ) = σ (a) + σ (b) = σ (a ⊕
b) = (µ(a ⊕ b))(σ ). It follows that µ(a) + µ(b) = µ(a ⊕ b) ∈ β. So β is a sub-
lattice effect algebra of [0, 1]φ . Thus, β is effect base of δ, and ([0, 1]φ , δ) is a
fuzzy effect space.

Let prove µ : P → β is an isomorphism. Obviously, we have proved µ(1) =
1φ and for a, b ∈ P, µ(a)⊥µ(b) implies a⊥b. Now, if a⊥b, then 1 ≥ σ (a) +
σ (b) = µ(a)(σ ) + µ(b)(σ ) = (µ(a) + µ(b))(σ ), for allσ ∈ φ, i.e.,µ(a) + µ(b) ≤
1φ , hence µ(a)⊥µ(b). From the above proof, we see (i), (ii) in Definition 5.14.
is satisfied. We only need to prove µ is bijective. Obviously, µ is surjective. For
a, b ∈ P, a �= b, by Proposition 5.2., then there exists aν ∈ ϕ such that v(a) �=
v(b), hence, µ(a)(v) = v(a) �= v(b) = µ(b)(v), that is, µ is monotone. So µ is a
isomorphism.
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Sufficiency. If P is isomorphic to an effect base β, then P is a lattice effect
algebra. Similar to Example 5.13., let vx : β → [0, 1], where vx (B) = B(x), for
all x ∈ X, B ∈ β, then {vx |x ∈ X} is a strong order determining system of states.
Hence, β, i.e., P is a lattice effect algebra with a strong order determining system
of states. �
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